**N****ame**:

Tianqing An

**Title**:

Professor

**Educational Background**

Ph.D, Mathematics, Lanzhou University (2003)

MS, Mathematics, Northwest Normal University, Capital Normal University (1987)

BA, Mathematics, Northwest Normal University (1984)

**R****esearch**

Research Interests

*• *Nonlinear Functional Analysis

*• *Critical point theory and Hamilton systems

Research Projects:

1. The periodic solutions of Hamiltonian systems and related problems, The National Natural Science Foundation of China (10871059), 2009/01-2011/12. (principal)

2. Multiple solutions of Hamiltonian systems, The National Natural Science Foundation of China (10571085), 2006/01-2008/12. (participant)

Journal Articles:

[1] Y. Ning, T. An, Existence and multiple solutions for nonautonomous second order systems with nonsmooth potentials. Kodai Math. J. 38 (2015), no. 3, 521-533.

[2] J. Wang, T. An, F. Zhang, Positive solutions for a class of quasilinear problems with critical growth in *R*^{N}. Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 2, 411-444.

[3] H. Gu, T. An, Existence of periodic solutions for a class of second-order discrete Hamiltonian systems. J. Difference Equ. Appl. 21 (2015), no. 3, 197-208.

[4] W. Liu, T. An, G. Ye, On first-order periodic boundary value problems and distributional Henstock-Kurzweil integrals. Bound. Value Probl. 2014, 2014:54, 11

[5] Z. Li, T. An, W. Ge, Existence of periodic solutions for a prescribed mean curvature Liénard p-Laplacian equation with two delays. Adv. Difference Equ. 2014, 2014:290, 10

[6] F. Wang, T. An, Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type on *R*^{N}. Electron. J. Qual. Theory Differ. Equ. 2014, No. 39, 11 pp.

[7] Y. Wu, T. An, Infinitely many solutions for a class of semilinear elliptic equations. J. Math. Anal. Appl. 414 (2014), no. 1, 285–295.

[8] H. Gu, T. An, Existence of infinitely many periodic solutions for second-order Hamiltonian systems. Electron. J. Differential Equations 2013, No. 251.

[9] X. Su, T. An, Twisted stacked central configurations for the spatial seven-body problem. J. Geom. Phys. 70 (2013), 164-171.

[10] A. E. Nurbek, T. An, T. Dena, Existence results for periodic solutions of nonautonomous second-order differential systems with (q,p)-Laplacian. Commun. Math. Res. 28 (2012), no. 3, 281-288.

[11] A. Nurbek,T. An, The existence of periodic solutions of non-autonomous second-order Hamiltonian systems, Nonlinear Anal. TMA, 74 (2011) 4862-4867.

[12] T. An, Z.-Q. Wang，Periodic solutions of Hamiltonian systems with anisotropic growth, Comm. Pure Appl. Ana. 9:4 (2010) 1069-1082.

[13] T. An, Subharmonic solutions of Hamiltonian systems and the Maslov-type index theory, J. Math. Ana. Appl. 331 (2007) 701-711.

[14] T. An, On the minimal periodic solutions of nonconvex superlinearHamiltonian systems, J. Math. Ana. Appl. 329 (2007) 1273-1284.

[15] T. An, Non-existence of positive solution of some elliptic equations in positive-type domains, Applied Mathematics Letters, 20 (2007) 681-685.

[16] T. An, Multiple periodic solutions of Hamiltonian systems with prescribed energy, J. Differential Equations, 236 (2007) 116-132.

[17] T. An, Periodic solutions of superlinear autonomous Hamiltonian systems with prescribed period, J. Math. Ana. Appl. 323 (2006) 854-863.

[18] T. An, The brake orbits of Hamiltonian systems on positive-type hypersurfaces, Positivity, 10 (2006) 681-692.

[19] T. An, Maslov-type indices for iterations of hyperbolic closed characteristics on positive-type hypersurfaces, Adv. in Math. (China), 34 (2005), 355-360.

[20] T. An, Periodic orbits of Hamiltonian systems on symmetric positive-type hypersurfaces, J. Math. Ana. Appl. 295 (2004) 144-152.

[21] T. An, On the number of periodic orbits of Hamiltonian systems on positive-type hypersurfaces in *R*^{2n}, Nonlinear Anal. TMA, 56 (2004) 633-641.

[22] T. An, Existence of multiple periodic orbits of Hamiltonian systems on positive-type hypersurfaces in *R*^{2n}, J. Math. Ana. Appl. 278 (2003) 376-396.

[23] T. An, Y. Long, On the index theories for second order Hamiltonian systems, Nonlinear Anal. TMA, 34 (1998) 585-592.

[24] Y. Long, T. An, Indexing domains of instability for Hamiltonian systems, Non. Diff. Equa. Appl. 5 (1998) 461-478.

[25] T. An, Y. Long, The classification of exponential paths in Sp(2n), Adv. in Math. (China), 27 (1998), 209-213.

**Academic Title**

Dean of College of Science, Hohai University

Executive Member of the Mathematical Society of Jiangsu Province.

**Contact**:

tel：+86-025-83786626

email：antq@hhu.edu.cn